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Abstract
In this conference paper we summarize the findings of a recent study [1], where the impact of the ultra-
relativistic regime on the production of a feebly interacting dark matter particle is considered. As its pop-
ulation accumulates over the thermal history, we inspected thoroughly the temperature window T � M,
which has been previously neglected in the context of dark matter models with renormalizable operators.
At high temperatures, and for the model considered in our work, the production rate of the feebly in-
teracting particle is driven by multiple soft scatterings, as well as 2 → 2 processes, that can give a large
contribution to the dark matter energy density.
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INTRODUCTION
It is well possible, despite not the only viable option, that dark matter (DM) comes in the form of a particle, either elementary or
composite. This possibility opens up a deep and intriguing connection between particle physics and cosmology. Many theories
beyond the Standard Model feature viable candidates for dark matter (see e.g. [2]). However, for any model one may want to
consider, it has to reproduce a rather accurate measurement: the present-day energy density for DM, (ΩDMh2)obs. = 0.1200 ±
0.0012 [3], where h is the reduced Hubble constant. The connection between the model Lagrangian in terms of fields and parameters
(namely masses and couplings), and the energy density is obtained by means of a production mechanism in the early universe. In
the case of the well and widely studied freeze-out mechanism, DM particles share sizeable interactions with the thermal bath, and
this typically implies many viable detection strategies. A key assumption of the freeze out mechanism is the thermal equilibrium
(chemical and kinetic) between DM and the plasma constituents. Weakly Interacting Massive Particles (WIMPs) belong to this class
of DM candidates and the experimental searches have been cornering the parameter space of many models, which are now put
under tension [4]. Perhaps this very fact has triggered a renewed interest for another class of DM candidates: feebly interacting
massive partcles (FIMPs). At variance with WIMPs, their interactions with the surrounding plasma is so weak that FIMPs never
reached thermal equilibrium. The population of a FIMP, if starting with a vanishing one after reheating, is entirely generated during
the thermal history by 2→ 1, 1→ 2 and 2→ 2 processes, where the FIMP appears only in the final state. The production mechanism
for feebly interacting particles in the early universe is called freeze-in [5, 6] (see[7, 8] for reviews on the topic and possible detection
strategies).

Let us stress that the relevant temperature range for freeze-in is complementary with respect to that for freeze-out. This very
fact holds for models with renormalizable interactions, where the dark matter production is dominated by T ∼ M [5, 6] (also
dubbed as infra-red freeze-in), as well as when non-renormalizable interactions are involved. In the latter case, usually referred to
as ultra-violet freeze-in [6, 9, 10, 11], the production mechanism is sensitive to much higher temperatures, such as the reheating
temperature which is set by reheating/end of inflation dynamics.

In this conference paper, we shall briefly review the findings of a recent study [1], where it is shown how the high-temperature
contribution to the FIMP production can be very important (namely T � M), even in the case one deals solely with renormaliz-
able operators. The physical situation is very similar to the production/equilibration rate of Majorana neutrinos in type-I seesaw
leptogenesis [12, 13, 14, 15], and we build up on the developments carried out in that research field. In particular we shall highlight
the contribution to the dark matter production rate from multiple soft scatterings, that enhance the 1→ 2 decay process and make
effective 1 ↔ 2 processes possible, oftentimes called the Landau–Pomeranchuk–Migdal (LPM) [16, 17, 18]. We shall consider as
well the contribution to 2 → 2 processes in the ultra-relativistic regime, namely when the thermal scale πT is larger than any
other mass scale in the model (in-vacuum and thermal masses). Thermal masses, which are of order gT, play a role in both sets of
processes, where g here labels the parametrically more important couplings of the equilibrated degrees of freedom.

In order to illustrate these various effects, we consider a concrete model with a Majorana dark matter fermion accompanied by
a heavier scalar particle, the latter sharing interactions with the Standard Model sector. More precisely, we consider a simplified
model often discussed in the literature [6, 19, 20, 21, 22], and it belongs to freeze-in models with interesting signatures at colliders.
More precisely, the dark matter interacts with a SM quark via a colored scalar mediator1, and the Lagrangian density reads [26]

1Other realizations are of course possible, where the dark matter particle is a real scalar or a vector boson [23, 24, 25, 26, 27].
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L = LSM +
1
2

χ̄ (i/∂ −M) χ + (Dµη)†Dµη −M2
η η†η − λ2(η

†η)2

− λ3 η†η φ†φ− y η†χ̄aRq− y∗ q̄aLχ η , (1)

where φ is the SM Higgs doublet, Mη the mass of the mediator and M the mass of the DM particle, with Mη > M so to ensure
the fermion being the lightest, and stable, state of the dark sector. The mass splitting between the coloured scalar and the DM
fermion is ∆M = Mη −M > 0. The Yukawa coupling between η and χ is denoted by y, whereas λ2 and λ3 are the self-coupling of
the coloured scalar and its portal coupling to the Higgs respectively. The coupling λ1 is left for the SM Higgs self interaction and
aR (aL) is the right-handed (left-handed) projector. In this work, we set λ2 = 0 in order to reduce the number of free parameters
of the simplified model. The heavier mediator is typically responsible for additional dark matter production at much later stages
in the thermal history via the super-WIMP mechanism [28, 29]. Here, the relic abundance of the mediator, as determined by pair
annihilations and thermal freeze-out, is key to the extraction of the dark matter energy density. Due to QCD interactions experience
by the coloured scalar, we shall include bound-state effects on the late-time annihilations of the colored mediator.

The plan of the paper is as follows. In section 1 we introduce the particle production rate from a finite-temperature field
theoretical point of view, and make contact with the standard Boltzmann equation. We will consider the Born rate with vanishing
and non-vanishing thermal masses as a reference single out the high-temperature effects. These are briefly reviewed in section 2:
effective 1 + n → 2 + n processes as well as 2 → 2 processes in the ultra relativistic regime. In section 3 we show their impact
on the relic energy density of dark matter, after we map out the parameters region where the freeze-in produced component is
largely dominant with respect to the Super-WIMP contribution. This assessment is rather important and bound-state effects for the
annihilating colored scalars are taken into account. Finally, we offer some concluding remarks in section 4.

1. PARTICLE PRODUCTION RATE AND BOLTZMANN EQUATION
The key ingredient in our analysis is the particle production rate, here for the DM particle χ. We consider a quite general approach
that allows to obtain the production rate of a weakly coupled particle with an equilibrated bath. The latter has internal couplings
denoted with g. One can prove that, at leading order in y and at all orders in g, the rate of change of the single-particle phase space
distribution fχ(t, k) reads [30] (

∂

∂t
− Hki

∂

∂ki

)
fχ(t, k) = Γ(k)[nF(k0)− fχ(t, k)], (2)

where k0 =
√

k2 + M2, K is the fermion four-momentum in Minkowski metric and nF is the Fermi–Dirac distribution. The produc-
tion rate Γ(k) can be expressed in terms of a two-point correlation function at finite temperature, in our case the self-energy of the
Majorana fermion

χ η

q

Γ(k) =
|y|2
k0 ImΠR . (3)

The retarded self-energy comprises equilibrated degrees of freedom (that enjoy a fast dynamics). At leading order in this model, one
finds a colored scalar and a SM quark in the one-loop self-energy. As typical of freeze-in production, which features an abundance
of the DM much smaller than the corresponding equilibirum one, one has fχ(t, k) � nF(k0). Therefore, we can neglect fχ on the
right-hand side of the rate equation (2). The approach outlined here reproduces a standard Boltzmann equation when applying
perturbation theory and working at leading order in the thermal bath coupling g. Upon defining the number density of dark matter
particles as nDM = 2

∫
k fχ(t, k), with the factor of 2 accounting for the two helicity states, we rewrite eq. (2) as follows

ṅDM + 3HnDM = 2|y|2
∫

k

nF(k0)

k0 ImΠR (4)

= 2|y|2Nc(M2
η −M2)

∫
pη ,pq ,k

(2π)4δ4(Pη −Pq −K)
8Eη Eq k0 nB(Eη)

[
1− nF(Eq)

]
, (5)

where the production rate has been worked out at leading order and simplified according to the sole process that is kinematically
allowed in this case: a decay process η → χq. As one may see on the right-hand side of eq. (5), the distribution function of the
equilibrated species (η, q) appear as in a gain term of a Boltzmann equation. The produced dark matter fermion appears with a
unity factor, that conforms with the expectation since 1 + fχ ' 1, due to its negligible abundance. It is worth noticing that the
approach discussed here has the full advantage of a field-theoretical formulation. Then, it offers the possibility to systematically
include higher order corrections and thermal effects.
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FIGURE 1: Left panel: the Born rate, divided by NcT2, computed with in-vacuum masses only (blue-dotted) and with thermal
masses included (red-dashed line). Right panel: the dark matter energy density from the Boltzmann equation (5) with the Born rate
with and without thermal masses. The parameters are fixed to reproduce (ΩDMh2)obs. for the in-vacuum Born case.

Born rate with vanishing and finite thermal masses
In order to set a reference for the high-temperature effects on the production rate and the dark-matter energy density, let us consider
the Born rate, namely the leading order contribution to the dark fermion self-energy. The Born rate, with in-vacuum masses, reads

ImΠR

∣∣∣∣
in-vacuum

=
NcT(M2

η −M2)

16πk

[
ln
(

sinh(β(k0 + pmax)/2)
sinh(β(k0 + pmin)/2)

)
− ln

(
cosh(βpmax/2)
cosh(βpmin/2)

)]
, (6)

with

pmin =
M2

η −M2

2(k0 + k)
, pmax =

M2
η −M2

2(k0 − k)
. (7)

and it just amounts at simplifying further the expression that appears in eq. (5).
Next, the first non-trivial thermal effects we consider are thermal masses. In a high-temperature environment, the modification

to the dispersion relation has to be taken into account and repeated interactions with the plasma constituents generate the so-called
asymptotic masses. We write the asymptotic thermal masses for the colored scalar and the SM quark, they read

m2
η =

(
g2

3CF + Y2
q g2

1

4
+

λ3
6

)
T2 , m2

q =
T2

4
(g2

3CF + Y2
q g2

1 + |hq|2) , (8)

where we note that the gauge contribution is the same for both the scalar and fermion; CF = (N2
c − 1)/(2Nc) is the quadratic

Casimir of the fundamental representation. The thermal mass for the DM is negligible since it is proportional to |y|2 �
g2

3, g2
1, λ3, |ht|2. It is important to stress that, for temperature larger than the SM electroweak symmetry breaking, the only source

for the quark mass is indeed the thermal contribution. This will play a role in the estimation of the production rate, since the finite
quark mass shrinks the available phase space in the decay process η → χq, depending on the choice of the parameters and the
temperature. Moreover, another crucial difference with the in-vacuum case is that another channel for the dark matter production
can be realized, namely q → ηχ, again because of the thermal masses. A more comprehensive discussion of the handling of the
scalar and quark thermal masses for different temperature regimes can be found in ref. [1]. Here we only give the expression for
the Born rate with finite thermal masses for the process η → χ + q (with “full” we mean thermal masses included)

ImΠR

∣∣∣∣
full

=
Nc

16πk

∫ pmax

pmin

dp[M2
η −M2 −m2

q − 2k0(Ep − p)][nB(k0 + Ep) + nF(Ep)], (9)

where the total (in-vacuum plus thermal) mass for the scalar isM2
η = M2

η + m2
η , Ep =

√
p2 + m2

q and the integration boundaries
are

pmin, max =
M2

η −M2 −m2
q

2M2

∣∣∣∣∣∣k0

√√√√1− 4M2m2
q

(M2
η −M2 −m2

q)2
∓ k

∣∣∣∣∣∣ . (10)
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FIGURE 2: Processes where the QCD gluons induce soft scatterings with plasma constituents (coming from the HTL resummed
gluon propagator). Both coloured/charged particles, namely η and q, can undergo multiple scatterings. The same processes occur
with the U(1)Y gauge boson.

In figure 1 left plot, we show the Born rate with and without thermal masses, red dashed and blue dotted respectively. One may
appreciate the effect of finite thermal masses and a smaller rate at high-temperatures due to the finite and large quark thermal mass
(for this choice of the parameters). On the right plot, we instead display the evolution of the energy density of the dark fermion
as a solution of the Boltzmann equation with the Born rate (6) and (9). We start with a vanishing initial abundance for χ and the
production of the dark fermion is driven by the decay process η → χ + q. It is important to notice two aspects. First, the bulk of the
dark matter production happens in a temperature window of the order of the decaying particle, here the coloured scalar. The gray
vertical lines show the range Mη/10 ≤ T ≤ 2Mη (or M/4 ≤ T ≤ 5M). For temperature larger than twice the decaying particle, the
DM energy density is still close to zero. This shows that, when adopting leading order rates, the bulk of the DM production occurs
for temperatures close to the accompanying decaying state mass (or the very same DM mass for small mass splittings). Second, the
inclusion of the thermal masses decreases the energy density because the production rate is less effective.

2. ULTRA-RELATIVISTIC DYNAMICS
As we have seen in the previous section, one integrates the Boltzmann equation (5) from very early times, namely high temper-
atures, to track the DM production. However, the Born rate, both the in-vacuum (6) and the one with thermal masses (9), peaks
at temperatures of the order of the decaying particle. The production is most effective at temperatures T <∼ Mη . We shall see that
there are processes which are instead very effective at high temperatures, and that can change the freeze-in production quite a
lot. In particular, at high-temperature, all the particles are essentially seen as massless with respect to the hard scale πT typical of
the thermal motion, and hence the angle between the initial state momenta or between the final state momenta can be small. This
defines the collinear kinematics as a distinctive feature of the high-temperature dynamics.

In the following we briefly discuss two classes of processes responsible for an enhancement of the production rate: effective
1 ↔ 2 processes, induced by multiple soft scatterings, and 2 ↔ 2 scatterings, whose correct derivation at leading order need both
Hard Thermal Loop (HTL) and LPM resummation. The technicalities are not addressed in this conference paper, and we refer to
ref. [1], and references therein, for a more detailed discussion.

LPM resummation and effective 1 + n↔ 2 + n processes
Let us start with the definition of hard and soft scales. At high temperatures all external momenta can be taken as hard, p ∼ πT,
whereas the thermal masses of the particles define a soft scale of order gT. In the regime T � Mη , M, we can treat the vacuum
masses M and Mη as soft scales as well. All the particles involved in the reactions are then close to the light cone because P2 ∼
(gT)2, where P is a Minkowskian four-momentum.

Let us now consider multiple scatterings with plasma constituents, as shown in the three diagrams in figure 2. Despite these
processes seem to be of higher order, due to the many additional vertices, this is not the case. The gauge bosons that are exchanged
with the thermal constituents of the medium are soft, namely q0 ∼ q ∼ gT, and this makes the intermediate virtual η bosons and
quarks almost on shell, with a lifetime (or formation time) of order 1/g2T, which is long and parametrically of the same order of the
soft-gauge-boson-mediated scattering rate (see e.g. [31] for a detailed disucssion). The point is that many of these scatterings occur
before the actual emission of the particles in the final states, and their interference has to be taken into account in what is called
LPM resummation. In so doing, we speak of effective 1 ↔ 2 processes to describe the 1 + n ↔ 2 + n processes being consistently
accounted for at leading order. The gauge bosons propagators (both QCD gluons and Bµ of U(1)Y) are the HTL ones, in order to
properly treat the soft momentum exchange.

We borrow the notation and computational setting from refs. [12, 13, 32, 15], where leptogenesis with Majorana neutrinos is
studied. The main ingredients to derive the LPM production rate are an effective Hamiltonian Ĥ that comprises thermal masses
for the colored scalar and the quark, as well as the rate that encodes soft gauge scatterings. It is important to stress that the LPM
resummation takes care of an arbitrary number of soft scatterings mediated by the QCD gluons as well as the U(1)Y gauge boson.
In this model both possibilities are viable (in figure 2 we only showed soft exchange mediated by gluons), and taken into account
in the numerical analysis for the dark matter energy density. Next, the effective Hamiltonian enters the inhomogeneous equations
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FIGURE 3: In this figure, the strong coupling is fixed at g2
3 = 0.85, and the effect of the U(1)Y gauge coupling is neglected, i.e. g1 = 0.

The values for the masses listed above the plot are the zero-temperature masses.

for the functions g(y) and f (y) that are necessary to compute the LPM effect, that can finally be expressed as

ImΠLPM
R = −Nc

8π

∫ +∞

−∞
dEq

∫ +∞

−∞
dEη δ(k0 − Eq − Eη)[1− nF(Eq) + nB(Eη)]

k0
Eη

lim
y→0

{
M2

k2
0

Im[g(y)] +
1

E2
q

Im[∇⊥ · f (y)]

}
. (11)

It is worth pointing out that the integration region in eq. (11) accounts both for effective 1 → 2 processes and for effective 2 → 1
processes. One may see this by fixing Eη to k0 − Eq by the δ function, and then three distinct regions are viable2

1. k0 > Eq > 0: this corresponds to the effective 2→ 1 process η, q→ χ,
2. Eq < 0: this corresponds to the effective 1→ 2 process η → qχ. eq. refcollborn is the n = 0 limit (no scatterings) thereof,
3. Eq > k0: this corresponds to the effective 1→ 2 process q→ ηχ.

Without accounting for soft scatterings, at most one of these three scenarios is realized at a time, e.g. scenario 2 forMη > mq + M.
The inclusion of soft scatterings makes all three options kinematically allowed simultaneously.

As we show in figure 3, the effective 1 ↔ 2 processes give the dominant rate at high temperatures (dotted green line), that
drives the dark fermion production at temperatures much larger than the colored scalar mass. The dot-dashed red curve stands for
the Born rate with thermal masses included (9), whereas the blue-dotted line represents the collinear limit. The latter is computed
from the LMP rate by imposing no soft scatterings. As shown in the plot, there is an enhancement at small temperatures which is
however non-physical: the collinear limit fails because of the temperature becoming comparable with the in-vacuum masses. Here
the sensitivity to the in-vacuum scales has to be reinstated, and our best effort curve is the black solid line that corresponds to

ImΠ1↔2
R = ImΠLPM

R − ImΠLPM Born
R + ImΠBorn

R . (12)

which ensures a reasonable 1 ↔ 2 rate at all values of M/T and could be ameliorated by the knowledge of the relativistic NLO
dark fermion self-energy (at the moment not available, see refs. [33, 34] for the present state-of-art).

2In this list we do not distinguish between particle and antiparticle states. Strictly speaking we should have e.g. η̄, q→ χ.
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Mb =Ma = + +

FIGURE 4: The diagrams contributing to the 2→ 2 processes g q→ ηχ and η†q→ gχ are shown. The same diagrams with a U(1)Y
gauge boson that replaces the QCD gluon (curly line) contribute as well. The complete list of diagrams is given in ref. [1].

2→ 2 scatterings
In addition to 1 → 2 effective processes, there are also 2 → 2 scattering processes to be considered. In this model, there are many
diagrams, an example of which is given in figure 4. In the high-temperature regime, they are expected to contribute at the same
order of multiple soft scatterings. We notice that 2 → 2 scatterings have been already considered in ref. [22], though for T <∼ M
and possibly with some limitations due to a proper handling of the IR divergences in some of the diagrams. Indeed there are two
distinct momentum regions for the momentum transfer that contribute to the 2 → 2 scatterings: a hard region q ∼ πT and a soft
region q ∼ gT. As for the former, the leading order equivalence with a Boltzmann equation holds and we can use eq. (2) to obtain

ḟχ(k) = nF(k)Γ(k)
∣∣∣∣hard

2↔2
+ · · ·

=
1
4k

∫
dΩ2↔2 ∑

abc

∣∣∣Mab
cχ(p1, p2; k1, k)

∣∣∣2 fa(p1) fb(p2) [1± fc(k1)] + · · · , (13)

where we have again neglected fχ(k) for the dark matter appearing in the final state and the ellipses stand for other production
processes, such as the 1 ↔ 2 channels. The summation runs over all possible 2 → 2 processes. As for the soft region, one has to
properly handle the sensitivity to such momentum scale for processes involving a fermionic t-channel. This can be achieved by
implementing a HTL resummation for the quark propagator. This way, one obtains a finite and physical result. We implement the
subtraction as detailed in ref. [15], and the final result reads

ImΠ2↔2
R =

2
(4π)3k

∫ ∞

k
dq+

∫ k

0
dq−

{[
nF(q0) + nB(q0 − k)

]
Nc
(
Y2

q g2
1 + CFg2

3 + |hq|2
)

Φs2

}
+

2
(4π)3k

∫ k

0
dq+

∫ 0

−∞
dq−

{[
1− nF(q0) + nB(k− q0)

]
Nc
(
Y2

q g2
1 + CFg2

3 + |hq|2
)

Φt2

−
[
nB(k) +

1
2

]
Nc
(
Y2

q g2
1 + CFg2

3 + |hq|2
) kπ2T2

q2

}
+ Nc

m2
q

16π

[
nB(k) +

1
2

]
ln

(
1 +

4k2

m2
q

)
+ O

(m4
q

k3

)
. (14)

where the expressions for the s- and t channel functions Φs2 and Φt2 is given in ref. [1].

Summary of the rates and phenomenological prescription
In preparation for the next section, we need to complement the treatment of the high-temperature processes in order to follow the
entire production process down to smaller temperatures. The main point is that, while the universe cools down, the dynamics of
the production processes is increasingly affected by the in-vacuum masses. As we assumed k ∼ πT � M, Mη , the calculations
presented in the former section cease to be valid for T <∼ M, Mη , where the full Born term of eq. (9) is the leading-order term and
subleading corrections are unknown in the relativistic regime.

In order to switch off such rates progressively when approaching this region in our analyses, we follow the recipe inspired
by ref. [15]: we shall multiply (ImΠLPM

R − ImΠBorn LPM
R ) and ImΠ2↔2

R by a factor κ(Mη), which is obtained by taking the η boson
susceptibility normalised by its massless limit. The susceptibility factor reads

κ(Mη) =
3

π2T3

∫ ∞

0
dp p2 nB(Eη)[1 + nB(Eη)] . (15)

Even though this prescription is based on a phenomenological argument rather than a rigorous implementation, it captures well
the sensitivity to the largest in-vacuum mass scale, namely Mη . In figure 5, we compare and sum our final 1 ↔ 2 results with our
2↔ 2 taking into account the phenomenological switch-off in eq. (15), and we define the total rate as

ImΠtot
R = ImΠ1↔2

R + ImΠ2↔2
R , (16)

where the susceptibility factor enters the collinear LPM rates as follows

ImΠ1↔2
R = (ImΠLPM

R − ImΠLPM Born
R )κ(Mη) + ImΠBorn

R . (17)
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FIGURE 5: The 1↔ 2 rate in eq. (17) and 2↔ 2 in eq. (14), times the susceptibility factor κ(Mη). The solid black line is their sum as
in eq. (16) (the dotted-black curve stands for the 1↔ 2 without κ(Mη)).

3. IMPACT ON THE RELIC DENSITY
For the model at hand, there are two contributions to the energy density of dark matter [22, 35]: the freeze-in mechanism, that
dominates at temperatures T >∼ Mη , and the super-WIMP mechanism [28, 29], that instead takes place much later at T � Mη . In
the latter case, the freeze-out of the η particles occurs similarly to a WIMP (despite the leading interactions are driven by the strong
coupling g3), and dark matter fermions are produced in the subsequent η decays. The decay rate will become efficient much later
than the chemical freeze-out because of the very small coupling y� 1. The observed dark matter energy density is then given by

(ΩDMh2)obs. = (ΩDMh2)freeze-in + (ΩDMh2)super-WIMP , (18)

where (ΩDMh2)obs. = 0.1200± 0.0012 [3].
Despite our focus is on the freeze-in production, a systematic assessment of the super-WIMP contribution is necessary. Indeed,

it is important to understand which of the two production process is dominant in the parameter space of the model. The dynamics
of the freeze-out and later-stage annihilations of colored scalars, as part of a dark matter model, has been extensively studied,
see e.g. [36, 37, 38, 39, 40, 41, 42, 43]. The main outcome is that QCD gluon exchanges induce a Sommerfeld enhancement along
with bound-state formation for the non-relativistic colored pairs (in the case of attractive channels), thus substantially reducing
the abundance of the η’s with respect to the free annihilation cross section. For our discussion, we shall adapt the treatment of the
present model as presented in ref. [41] by taking the limit of very small y’s. In this approach non-relativistic effective field theories
are exploited. One determines a thermally modified QCD potential and solve the corresponding Schrödinger equation, that pro-
vides thermally averaged Sommerfeld factors in terms of the spectral function of the colored scalar pair. It is worth remarking that,
with this approach, the annihilating pair is determined dynamically, and bound states appear naturally when decreasing the tem-
perature of the plasma (this is pretty much the same of the sequential melting seen in hevay-ion collisions for heavy-quarkonium
systems). With respect to the analyses carried out in ref. [22], we include bound-state effects in our work, that further boost the scalar
annihilations in addition to the above-threshold Sommerfeld enhancement. The result is shown in figure 6 (left panel), where the
curves corresponding to different fractions of the super-WIMP contribution to the overall observed energy density are displayed
in the plane (M, ∆M). The black dots are points in the parameter space where the freeze-in contribution is largely dominant.

In the following, we show the final results on the dark matter energy density when using different production rates discussed in
the former sections. We present here the results for three benchmark points (for which the super-WIMP contribution to (ΩDMh2)obs.
is less than 1%)

P1 (M = 0.2 TeV, Mη = 2.2), P2 (M = 2.0 TeV, Mη = 2.5) and P3 (M = 2.0 TeV, Mη = 2.2),
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FIGURE 6: Left panel: the curves reproduce various fractions of the dark matter energy density upon using the thermally averaged
cross section comprising Sommerfeld enhancement and bound state effects, for λ3 = 1.0. We show four benchmark points, black
dots, for which we discuss the freeze-in production. Right-panel: Dark matter energy density for the benchmark point P1 with
λ3 = 1.0. Different contributions corresponding to different rates are shown.

103 104 105

T [GeV]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

DM
h

2

M = 2.5 TeV, M = 2.0 TeV, 3 = 1, y=2.21e-12

DM from < tot >
DM from < tot >  w/o exp. suppr.
DM from < Born >
DM from < 2 2 >
DM from < Born > , vacuum masses

103 104 105

T [GeV]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

DM
h

2
M = 2.2 TeV, M = 2.0 TeV, 3 = 1, y=2.25e-12

DM from < tot >
DM from < tot >  w/o exp. suppr.
DM from < Born >
DM from < 2 2 >
DM from < Born > , vacuum masses

FIGURE 7: Dark matter energy density for the benchmark point P2 and P3 with λ3 = 1.0. The up-quark Yukawa is ht, running and
non-vanishing.

in the case of a top-like quark, with running Yukawa coupling hq. The rate equation reads, again from (2) upon defining the yield
Y = nDM/s, as follows

d Y
d x

= 2
〈Γ̂〉

s
, (19)

where x ≡ ln(Tmax/T), with Tmax the temperature where we start the evolution, with Y(x = 0) = 0. Ô ≡ O/(3c2
s H), with c2

s the
speed of sound squared and H is the Hubble rate. Finally, 〈. . .〉 ≡

∫
k . . . nF(k0). In what follows, we will use the parametrizations

of [44] for the speed of sound and entropy and energy densities, the latter entering the Hubble rate.
We do not perform a systematic scan of the parameter space. However, as a general trend, we find that the smaller the relative

mass splitting ∆M/M, the larger the impact of thermal masses, LPM and 2 ↔ 2 processes. This can be understood in terms of
the decreasing phase space in the η → χq decay process as ∆M/M gets smaller. The effect of neglecting the high-temperature
contribution to the DM prodution is rather striking, as one can see in figure 6 (right panel) and 7. Even in the case of the largest
mass splitting considered here, ∆M/M = 10, high-temperature contributions still gives a 20% (40%) correction to the in-vacuum
(thermal-mass included) Born production. For the smaller mass splitting in our analysis, ∆M/M = 0.1 the correction are well
beyond O(1).
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4. CONCLUSIONS
In this conference paper we summarize the finding of the work [1]. The main scope of the study is the assessment of the high-
temperature contributions to the freeze-in production mechanism, as induced by renormalizable operators (see Lagrangian (1)).
For this scenario, the bulk of the dark matter production is expected to happen for T ∼ M, so to define what is usually dubbed in
the literature as infra-red freeze-in. However, the results shown here, and discussed in more detail in ref.[1], demonstrate that this
is not always the case: the dark matter population, as produced in the ultrarelativistic regime, can largely contribute to the total
observed energy density. This is due to very efficient processes that take place in a high-temperature plasma, where all particles can
be regarded as effectively massless and a collinear kinematic is established. We addressed multiple soft scatterings, that enhance
the 1 → 2 decay process and make others viable, as well as 2 → 2 scatterings. For this model, the contributions to the DM energy
density from such high-temperature processes induce corrections to the in-vaccum rate that range fromO(20%) up to fromO(10),
depending on the mass splitting ∆M. The main theoretical improvement that can be foreseen is the derivation of NLO rates for
T ∼ Mη , M. This calculation would indeed allows us to ameliorate and make smoother the matching of the rates from the ultra-
relativistic to the low-temperature regime.

As for models that feature interactions between the accompanying state in the dark sector and the Standard Model (see e.g. refs.
[25, 45, 20, 27, 23, 24, 26, 46, 47]), our findings suggest a careful reassessment of the cosmologically preferred parameter space. The
observed energy density is indeed a cornerstone of dark matter phenomenology, and one needs to map out the parameter space of
the model that reproduces (ΩDMh2) obs., which is by the way precises at 1% level.

ACKNOWLEDGEMENTS
I am grateful to the Organizers of the BSM 2021 conference for the opportunity to present the research work, and to Jacopo Ghiglieri
for the collaboration on the work presented at the conference.

References
[1] S. Biondini and J. Ghiglieri. Freeze-in produced dark matter in the ultra-relativistic regime. JCAP, 03:075, 2021.
[2] Gianfranco Bertone and Dan Hooper. History of dark matter. Rev. Mod. Phys., 90(4):045002, 2018.
[3] N. Aghanim et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys., 641:A6, 2020.
[4] Giorgio Arcadi, Maı́ra Dutra, Pradipta Ghosh, Manfred Lindner, Yann Mambrini, Mathias Pierre, Stefano Profumo, and Farinaldo S. Queiroz.

The waning of the WIMP? A review of models, searches, and constraints. Eur. Phys. J. C, 78(3):203, 2018.
[5] John McDonald. Thermally generated gauge singlet scalars as selfinteracting dark matter. Phys. Rev. Lett., 88:091304, 2002.
[6] Lawrence J. Hall, Karsten Jedamzik, John March-Russell, and Stephen M. West. Freeze-In Production of FIMP Dark Matter. JHEP, 03:080,

2010.
[7] Howard Baer, Ki-Young Choi, Jihn E. Kim, and Leszek Roszkowski. Dark matter production in the early Universe: beyond the thermal WIMP

paradigm. Phys. Rept., 555:1–60, 2015.
[8] Nicolás Bernal, Matti Heikinheimo, Tommi Tenkanen, Kimmo Tuominen, and Ville Vaskonen. The Dawn of FIMP Dark Matter: A Review of

Models and Constraints. Int. J. Mod. Phys., A32(27):1730023, 2017.
[9] Carlos E. Yaguna. An intermediate framework between WIMP, FIMP, and EWIP dark matter. JCAP, 02:006, 2012.

[10] Martin B. Krauss, Stefano Morisi, Werner Porod, and Walter Winter. Higher Dimensional Effective Operators for Direct Dark Matter Detection.
JHEP, 02:056, 2014.

[11] Fatemeh Elahi, Christopher Kolda, and James Unwin. UltraViolet Freeze-in. JHEP, 03:048, 2015.
[12] Alexey Anisimov, Denis Besak, and Dietrich Bodeker. Thermal production of relativistic Majorana neutrinos: Strong enhancement by multiple

soft scattering. JCAP, 1103:042, 2011.
[13] Denis Besak and Dietrich Bodeker. Thermal production of ultrarelativistic right-handed neutrinos: Complete leading-order results. JCAP,

1203:029, 2012.
[14] I. Ghisoiu and M. Laine. Interpolation of hard and soft dilepton rates. JHEP, 10:083, 2014.
[15] J. Ghiglieri and M. Laine. Neutrino dynamics below the electroweak crossover. JCAP, 1607(07):015, 2016.
[16] L.D. Landau and I. Pomeranchuk. Electron cascade process at very high-energies. Dokl.Akad.Nauk Ser.Fiz., 92:735–738, 1953.
[17] L.D. Landau and I. Pomeranchuk. Limits of applicability of the theory of bremsstrahlung electrons and pair production at high-energies.

Dokl.Akad.Nauk Ser.Fiz., 92:535–536, 1953.
[18] Arkady B. Migdal. Bremsstrahlung and pair production in condensed media at high-energies. Phys.Rev., 103:1811–1820, 1956.
[19] Mathias Garny, Jan Heisig, Benedikt Lülf, and Stefan Vogl. Coannihilation without chemical equilibrium. Phys. Rev., D96(10):103521, 2017.
[20] G. Bélanger et al. LHC-friendly minimal freeze-in models. JHEP, 02:186, 2019.
[21] Mathias Garny, Jan Heisig, Marco Hufnagel, and Benedikt Lülf. Top-philic dark matter within and beyond the WIMP paradigm. Phys. Rev.,

D97(7):075002, 2018.
[22] Mathias Garny and Jan Heisig. Interplay of super-WIMP and freeze-in production of dark matter. Phys. Rev., D98(9):095031, 2018.
[23] Junji Hisano, Koji Ishiwata, Natsumi Nagata, and Tomohiro Takesako. Direct Detection of Electroweak-Interacting Dark Matter. JHEP, 07:005,

2011.
[24] Anthony DiFranzo, Keiko I. Nagao, Arvind Rajaraman, and Tim M.P. Tait. Simplified Models for Dark Matter Interacting with Quarks. JHEP,

11:014, 2013. [Erratum: JHEP 01, 162 (2014)].
[25] Haipeng An, Lian-Tao Wang, and Hao Zhang. Dark matter with t-channel mediator: a simple step beyond contact interaction. Phys. Rev. D,

89(11):115014, 2014.
[26] Mathias Garny, Alejandro Ibarra, and Stefan Vogl. Signatures of Majorana dark matter with t-channel mediators. Int. J. Mod. Phys.,

D24(07):1530019, 2015.
[27] Chiara Arina, Benjamin Fuks, and Luca Mantani. A universal framework for t-channel dark matter models. Eur. Phys. J. C, 80(5):409, 2020.
[28] Jonathan L. Feng, Arvind Rajaraman, and Fumihiro Takayama. Superweakly interacting massive particles. Phys. Rev. Lett., 91:011302, 2003.

9



Andromeda Proceedings BSM 2021, Online

[29] Jonathan L. Feng, Arvind Rajaraman, and Fumihiro Takayama. SuperWIMP dark matter signals from the early universe. Phys. Rev. D,
68:063504, 2003.
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